Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chem Biol Interact ; 361: 109954, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2260042

ABSTRACT

Patients with underlying diseases and coronavirus disease 2019 (COVID-19) are at increased risk of death. Using the recommended anti-COVID-19 drug, chloroquine phosphate (CQ), to treat patients with severe cases and type 2 diabetes (T2D) could potentially cause harm. We aimed to understand the safety of CQ in patients with T2D by administrating the recommended dose (63 mg/kg twice daily for 7 days) and a high dose (126 mg/kg twice daily for 7 days) of CQ in T2D rats. We found that CQ increased the total mortality of the T2D rats from 27.3% to 72.7% in the recommended and high-dose groups during the whole period. CQ also induced hematotoxicity of T2D rats in the high-dose group; the hepatic enzymes in T2D rats were significantly elevated. CQ also changed the electrocardiograms, prolonged the QTc intervals, and produced urinary leukocytes and proteins in the T2D rats. Histopathological observations revealed that CQ caused severe damage to the rats' heart, jejunum, liver, kidneys, spleen, and retinas. Furthermore, CQ significantly decreased the serum IL-1ß and IL-6 levels. In conclusion, the CQ dosage and regimen used to treat COVID-19 induced adverse effects in diabetic rats, suggesting the need to reevaluate the effective dose of CQ in humans.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Chloroquine/toxicity , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Hydroxychloroquine/adverse effects , Rats , SARS-CoV-2
2.
Front Pharmacol ; 13: 1051694, 2022.
Article in English | MEDLINE | ID: covidwho-2163081

ABSTRACT

Chloroquine was once thought to be a promising treatment for COVID-19 but it quickly failed due to its inefficiency and association with increased mortality. Further, comorbidities such as hypertension may have contributed this failure. The safety and toxicity of chloroquine at doses required for treating SARS-CoV-2 infection in hypertensive patients remain unknown. Herein, to investigate these effects, we performed a safety evaluation of chloroquine at the approved dose (63 mg/kg) and at a high dose (126 mg/kg) in hypertensive rats. We found that chloroquine increased the mortality of hypertensive rats to 18.2% and 100%, respectively, after 7 days. During the chloroquine exposure period, the bodyweight, feed, and water consumption of hypertensive rats were decreased significantly. In addition, we show that chloroquine induces prolongation of QTc interval, elevation of LDH and CK, and histopathological damage of the myocardium in hypertensive rats. Ocular toxicity was observed in hypertensive rats in the form of hemorrhage in the eyes and retinal damage. Furthermore, we also observed intestinal toxicity in hypertensive rats, which presented as thinning intestinal walls with hemorrhagic contents, and histopathological changes of the jejunum. Hepatotoxicity was also evidenced by elevated ALT, and vacuolization of hepatocytes was also observed. Nephrotoxicity was observed only in high dose chloroquine-treated hypertensive rats, presenting as alterations of urinalysis and renal function. Immune alterations were also found in high-dose chloroquine-treated hypertensive rats with elevation of serum IL-10, IL-1ß and GRO, and moderate damage to the spleen. In summary, this study partially explains the reason for the failure of chloroquine as a COVID-19 therapy, and underlines the importance of safety evaluation and medical supervision of chloroquine to avoid patient harm, especially to those with hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL